
1C H A P T E R

The Penguin on Top

February, 2001, New York City

You’ve got all kinds on the floor of LinuxWorld Expo, the semi-
annual convention (one per coast) where the Linux faithful (and
not so faithful) meet. Start walking from one end of the exhibit
hall to the other, and you’ll see the giant penguins hovering over
post-adolescents wearing devil horns, corporate types from IBM,
teenage boys hunched over laptops, mind-readers, hired models,
smirking tech journalists, glad-handing executives, assorted geeks,
and the occasional Linux evangelist preaching to his public.

This year’s convention is particularly interesting. Beyond
the sideshow-like atmosphere of some of the exhibits—not to
mention the ill-matched menagerie of suits, nerds, and ad-men—
many of us tech journalists sense that we should pursue a final
interview with some of the exhibitors, because it may well be
the end of the road for the smaller companies. This notion is
fueled by rumors of layoffs in some major Linux companies;
by an ever-dwindling number of outfits hawking shrink-wrapped
distributions on the strength of installation support; and by the

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM3

4 THE JOY OF LINUX

largest booths in the building, which are owned by truly giant
companies, such as IBM and Intel—indicating that Linux is a
market that’s been entered, for good or ill, by the people who
define computing.

“Look around,” one writer says, “half of these people will
be gone next year.” An older editor makes a crack about the kids
being run out of the sandbox. A look over at the Slashdot booth,
replete with beanbag chairs (these are de rigeur for Linux gath-

erings, implying the carefree spirit and
sturdy backs of youth), Nerf guns, and
a Playstation, shows a collection of
middle-aged men dressed in corpo-
rate-weekender outfits, eyeing the
whole thing with mixed puzzlement
and condescension. Their hands dip
into the pockets of their Polar-fleece
vests to produce business cards as the

perimeter around the temporary geek-chic habitat holds, itself
produced by the corporate largesse of Slashdot’s owners.

I take a moment to sit in a beanbag chair alongside a senior
executive from a company new to the Linux world. He’s build-
ing software that makes Linux easier to deal with for house-
wives, secretaries, and “the end user,” a mythical creature widely
assumed by true geeks to be the tragic by-product of a lobotomy
and an unfortunate youth spent playing in the sun with other
children. The executive mentions “the hacker ethic,” referring
to the loose set of characteristics so many of Linux’s pioneers
seemed to possess: curiosity, constructive anti-authoritarianism,
mutualism, independence, and mistrust of the ready solution or
typical answer.

“Your company is new to all this,” I say. “And I mean no
disrespect, but it’s hardly a collection of hackers. You talk about
the hacker ethic, but it seems like your company won’t really be

Look around,” one
writer says, “half of
these people will be

gone next year.”

“

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM4

Chapter 1—THE PENGUIN ON TOP 5

a success until hackers are a much smaller proportion of the
Linux user base.”

The executive, perched in his beanbag chair, is quiet for a
moment, and then picks his words with care. “It’s still early. The
hackers are vital to us, creatively vital people…but, well, Linux
is bigger than any group.” Five minutes later, he’s bemoaning
the woeful state of quality control present in open-source soft-
ware, and the slovenly adherence to deadlines observed by the
average hacker.

He wants the kids out of the sandbox.
The same day, though, I walk over to a company trying to

make its mark with a version of Linux that runs on handheld
computers. The people at the booth are excited, their body lan-
guage is almost frantic. The words of one of the developers I
speak to come out in a flood. He excitedly demonstrates a
handheld computer performing instant chat over a wireless con-
nection to the Internet. He shows how even the most mundane
data can be transformed with his software to make sense in a
variety of contexts from handheld computer to desktop machine
to processes that don’t ever show themselves to users, but com-
municate amongst each other. There’s a high cool factor to what
he’s preaching, but there’s also the point to which he keeps re-
turning: All of it happens with open-source software.

“This is all with open standards,” he exclaims. “With open-
source software. And it’s happening with all the tools we’ve been
building from free software for years. People have been building
the foundations to make information take on its own life for
years without knowing it, and now we’re bringing it together.”

Part of it is, to anyone who’s been around computing since
the first days of the Internet creeping into the awareness of self-
annointed Information Age prophets, old hat. Fads come and
go. At each conference, we’re promised a golden age of intelli-
gent software, or “smarter information,” or some other buzzword.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM5

6 THE JOY OF LINUX

Some maintain that open-source software is itself a fad
preached by businesses looking to sound hip even as they fig-
ure out ways to share nothing while harnessing the creativity
of youth eager to sign up with a revolution or join a move-
ment. But the fact of the matter is, this guy is right. For years
and years, people have been building an infrastructure that
was surely meant for something besides pushing banner ads,
pornography, and corporate brochure sites.Tools have been
crafted, sometimes because they had to be to progress any
further, sometimes because it was just fun.

Standards have been defended against attempts to close them
because a community of Internet users needed those standards
kept open to keep their tools working, and the lines of commu-
nication open.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM6

Chapter 1—THE PENGUIN ON TOP 7

The result? Small companies are out to redefine everything
with big ideas and the enthusiasm of revolutionaries. Linux was
never the meaning of the exercise to them, but Linux is free and
open—the perfect base from which they can explore their own
ideas without having to reinvent or build from scratch.

It all adds up to paradox after a few hours: Internet visionar-
ies who see Linux as just another tool; industry veterans who pre-
dict the demise of more than a handful of Linux companies as the
stock market euphoria fades and doomed revenue models they
defended prove unviable; graybeards
who have come forth from the most
hidebound backgrounds to embrace an
operating system that was built by
hackers but is now in the hands of ev-
erybody regardless of cultural alle-
giance. All the horses seem to be pull-
ing in a direction that indicates the end
of Linux as a phenomenon. And yet,
it’s precisely because of these things
that, well, the penguin is on top.

TALKIN’ ’BOUT A REVOLUTION

Linux poked its head into the world barely ten years ago, not
much more than an interesting diversion for a hobbiest, and
promising little more than the novelty of booting something
very UNIX-like on PC hardware. During the past ten years,
however, Linux has gone from toy to contender, putting the
fear into more than a few companies as it has found its place as
a “glue” operating system. Maybe it didn’t perform some tasks
that well, but it excelled when it came to doing the sort of day-
to-day grunt work network and system administrators rely on
to keep things moving.

Small companies are
out to redefine

everything with big
ideas and the
enthusiasm of

revolutionaries.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM7

8 THE JOY OF LINUX

Alternately lauded and reviled, sometimes by the same people,
Linux’s progress in the server room and the public imagination
has been undeniable. The phenomenon crescendoed in the sum-
mer and fall of 1999, when several Linux companies held initial
public offerings that set new records as their share prices rose to
twenty and thirty times the initial offering price. That explosion
died, though, and the very same companies struggle now, still
moving toward profitability, but buoyed by buzz no longer.

How is this indicative of a revolution won? If the corporate
guys are talking about nudging out the hackers who made Linux
happen in the first place even as the public euphoria over the
phenomenon fades, where’s the victory?

The answer lies in the ubiquity of Linux in 2001.
When Linus Torvalds gave the gift of Linux to the world, he

did so (after a false start) under terms that left Linux open to all
takers, for good or ill. An implicit understanding of the move-
ment from which Linux derives its license, the document which

sets the terms and conditions under
which Linux may be distributed, is
that software must remain open to
modification. That way, if a program-
mer misses the mark where another’s
needs are concerned, the next person
down the line may do what’s neces-
sary to build on the existing work and
make it better.

And Linux has missed the mark
plenty of times over the years, at first
not even able to be booted on its own,
then lacking so much as a collection

of reliable networking tools. With time, however, each of these
deficits has been corrected—the result rolled into the ever-grow-
ing, ever-diversifying collection of software and tools that is

Alternately lauded
and reviled, sometimes

by the same people,
Linux’s progress in the
server room and the

public imagination has
been undeniable.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM8

Chapter 1—THE PENGUIN ON TOP 9

Linux, slowly making its way into server rooms and back of-
fices, Web servers and desktops, until we arrive at today, with an
operating system that’s taken seriously by the likes of IBM and
Microsoft (one hoping to profit, the other hoping it will go away
before more damage is done).

After ten years of constant
progress, Linux is everywhere. It’s ev-
erywhere in so many forms and be-
cause of the efforts of so many people
with so many different agendas that
it can’t go away, because it’s not a
single thing by a long shot.

As I stand in that convention hall, surrounded by the booths
of companies soon to disappear, enclosed by executives who are
grateful for all the code they can work with but less so for the
hackers who wrote that code, overshadowed by IBM’s gigantic
booth, I realize something important. Even if the revolution is
over, it has left its mark on the computing landscape that won’t
be removed no matter what sort of marketing hype is brought to
bear on it, and no matter how dismally the companies who sought
to sell it perform.

The sound and fury of the past few years on the part of Linux
evangelists mighty and small came together to buy Linux a place
at the table. Whether the hackers carry it forward, or some com-
puting giant ends up driving it, Linux is a fact.

IS THERE A GENERAL PURPOSE, TIME-SHARING

SYSTEM IN THE HOUSE?: THE REALLY QUICK AND

DIRTY STORY OF UNIX

It’s impossible to understand Linux at all without knowing where
it came from, and that’s a story that goes back over 30 years to
Bell Laboratories, where UNIX was born.

After ten years of
constant progress,

Linux is everywhere.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM9

10 THE JOY OF LINUX

Two computer scientists named Ken Thompson and Dennis
Ritchie were working on an operating system called Multics
(Multiplexed Information and Computing Service); an attempt
to create an operating system for large computers with the means
to provide access to many users at the same time. Multics, thanks
to its resource hungriness, had earned the disapproval of man-
agement, which promptly, in the manner of management every-
where, pulled the plug on the project, leaving the gentlemen with-
out a sanctioned operating system project.

Thompson was eventually granted the use of a DEC PDP-7,
and in best computer-nerd fashion, set about to make it a better
game machine. That in turn led to the first UNIX kernel. For his
part, Ritchie had developed a computer language, which he called
“C,” for Thompson’s new operating system. C is important for
the simple reason that it was one of the first proofs of the notion
that a programming language can be “cross platform.” That is,
if you use C to come up with a really good version of “Space
Wars” on one machine, you’ll be able to run it on a different
machine with a different operating system with little hassle.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM10

Chapter 1—THE PENGUIN ON TOP 11

This is called portability, and computer historians agree that there
wasn’t much of it leading into the 1970s.

So with C in hand, Thompson and Ritchie were tasked with
producing an office-automation system for Bell, and they were
given better hardware with which to
do it—a DEC PDP-11 to be exact.
Thanks to C and the wonder of port-
ability, the two rewrote much of the
embryonic UNIX and ported it to the
new hardware.

Portability allowed UNIX to eas-
ily move from its earliest host to its
new home, and it also eased the spread
of UNIX among computer enthusiasts
(who weren’t, at the time, quite the
same people as they are today, owing
to the scarcity of computers outside research institutions and uni-
versities). Bell Labs, thanks to the antitrust woes of AT&T, was
fairly friendly about the distribution of the UNIX source code for
several years, releasing at least one version to universities free of
charge, and another for around $100. Businesses and the govern-
ment had to pay tens of thousands of dollars. For a while, the
source code for UNIX flourished until AT&T made moves to halt
it, citing its ownership of the proprietary source code.

UNIX, however, had caught on.
Books have been written about what made UNIX so popu-

lar, and we could spend the rest of this volume mucking about
with the gory details. If we did, however, this book would stop
being a “connoisseur’s guide to open source,” and start being an
anatomical text. We don’t want to go there. Some key items should
be listed, though, because they exist in one form or another in
Linux as we know it today. For every baggy-pants–wearing kid

This is called
portability, and

computer historians
agree that there wasn’t
much of it leading into

the 1970s.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM11

12 THE JOY OF LINUX

on a skateboard who runs Linux because it’s “kewl,” there are
plenty of people who first picked it up because it gave them a
UNIX they could play with in the privacy of their own home,
and that was something they’d wanted for a very long time.

So…the reasons for all that enthusiasm:
• Portability. Thanks to C, you could move UNIX from

one machine to another without having to rewrite all your
favorite programs from scratch.

• Modularity. It provided an abundance of very functional,
single-purpose tools that were easy on memory and re-
sources, but could be combined to provide big results in
a number of ways.

• Flexibility. It was flexible without requiring a ton of
in-depth knowledge. You could leverage your command
of the individual components to produce bigger results
through scripting and piping, without needing to come up
with a whole new program each time your needs changed.

Portability

UNIX places an emphasis on values that seemingly represent dia-
metric opposites of what you see in other operating systems. For

instance, portability is a key value that
UNIX enthusiasts share. It’s because
of this desire to be able to move a
common set of tools from one com-
puter to the next that Linux (and its
cousins) now run on a staggering ar-
ray of computing hardware: every-
thing from garden-variety PCs to
iMacs to handheld computers to mas-
sive mainframe computers.

UNIX places an
emphasis on values that

seemingly represent
diametric opposites of
what you see in other

operating systems.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM12

Chapter 1—THE PENGUIN ON TOP 13

Modularity

Think about a word-processing program and everything it does.
It allows text to be formatted, printed, previewed, spell-checked,
and generally mangled—and it does it all in a single program
that gets bigger and slower as time goes by and more features get
chunked in. Word processors are not modular. Now consider a
collection of small programs that, on their own, are the func-
tional equivalent of bees in a hive, with a single purpose apiece.

You might, for instance, have a single program for doing
nothing more than entering text. It won’t check your spelling, or
offer a way to make a pretty printout
of what you’re working on. Once
you’re done with that program, how-
ever, you can then run your file
through a spell-checking program
that, although it may not do much
else, really knows how to spell check.
Done with the spell checker? Move
the file on to a formatting program
that reads your formatting codes and
converts the text file into something
a printer can understand. From there,
you hand things off to a program that
handles printing quietly and efficiently with minimal overhead.

To the “modern” way of thinking, this is clearly insane. It
implies complexity, because each of these programs must be run
on their own—and we all know how bad complex things are.
Why bother with a bunch of small, efficient programs when there’s
a one-stop solution?

We’re not going to be OS fascists and suggest that this is a
bad question to ask. In some cases, especially considering how

Now consider a
collection of small

programs that, on their
own, are the functional
equivalent of bees in a

hive, with a single
purpose apiece.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM13

14 THE JOY OF LINUX

inexpensive good computer hardware is these days, it’s entirely
appropriate to just stick with that big, memory-hungry word
processor with more toolbars than there are lost socks in the
world and plow ahead.

On the other hand, when you consider that there are hun-
dreds more programs just like the ones I’ve described, which can
do all sorts of other things really, really well in all sorts of com-
binations, it makes you think. If you’re in an environment where
processing power is shared, those small programs doing their
thing and then quietly exiting end up saving a lot more process-
ing time and memory than a single, huge program.

Flexibility

“Flexibility” in the UNIX world is a simple concept once we
take all those single-purpose tools and marry them together. Much
the same way a necklace made of many tiny links will appear
more supple than one made of big, iron rings, UNIX’s “small
tools” approach means that there are more small, meaningful
relationships a user or programmer can establish between all
those tools, and there are plenty of ways to do the same thing,
each as “correct” as the next, even if some are more appropriate
in certain contexts than others.

The beauty of the UNIX way of doing things is that your
knowledge of a fairly small set of all the available tools can be
leveraged by compounding their effects and making more tools
in all sorts of combinations. And because these compound tools
are made of tiny, replacable parts, there’s a seemingly infinite
array of possibilities when it comes to accomplishing a task. A
few features of the UNIX approach confer this flexibility nicely:

Piping
A practical corollary to the modularity of single-task programs
within the UNIX way is that they should also act as filters through

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM14

Chapter 1—THE PENGUIN ON TOP 15

which you can “pipe” information. Consider, for instance, one
of the more tedious tasks of daily corporate life: taking credit for
someone else’s work.

In this scenario, you, a simple cor-
porate drone with an overpriced
apartment and an expensive monthly
car payment, have been toiling in the
shadow of your neighbor, the ever-
industrious John J. Spurworthy, who
has spent the last year working on a
project you secretly covet. You’ve got
a chance to pass all of his work off as
your own…but wait! The rotter has
made sure his name is in every file
related to that project.

With that other word processor (we’re not naming names),
you could open each file and hunt down his name. Not too bad
if he just put it at the top of each file, a trivial task for a moder-
ately experienced Word-pro warrior if it’s liberally sprinkled
throughout, but a colossal pain if it’s not only liberally sprinkled
through one file, but all 183 he was working on.

Thanks to your ability to pipe commands with UNIX, help
is on the way. You just visit the directory where the mightily
gifted and devoted servant to your ungrateful corporate over-
lords keeps his stuff and type:

cat * | sed s/John\ Spurworthy/Dick\ Phillips/g | lpr

And out comes his work, having been opened by the cat com-
mand (which does one thing very well: shows the contents of
files), filtered by the sed command (which does one thing very
well: slices and dices text files), and then handed off to the lpr
command (which sends files off to the printer), pristine in all its
creative glory. Except, of course for the niggling detail that his

Consider, for instance,
one of the more

tedious tasks of daily
corporate life: taking
credit for someone

else’s work.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM15

16 THE JOY OF LINUX

name is no longer anywhere to be found in the printout, which
means you are, um, one gravy-sucking corporate stud-muffin.

Scripting
So you’ve got small, single-purpose programs that do their one
thing well. Added to that, they can talk to each other, making
your computer more of a hive of determined and capable bees
than a collection of really, really expensive pink elephants with
wet-bars tied to their backs. Add the element of easy scripting to
the mix, and you’ve really got something.

Scripting is an easy concept to grasp: Rather than typing a
bunch of commands in over and over again, you can write a very
simple program (a script) that does the typing for you. This capa-
bility may remind DOS fans of batch files, but because UNIX was
so oriented to the power users of computing in its early days, it
developed much more powerful scripting capabilities and, of
course, always had many more of those powerful, single-purpose
programs to use when it came time to write the scripts they used.

For many tasks, all of those little programs—combined with
their capability to filter information before sending it to the next

program in a pipe, and further com-
bined with their capability to string
together even longer sequences of
commands and pipes into a script—
mean that there’s less need to do what
we think of as “programming” for
common tasks. You don’t need to
know C, for instance, to come up with
a nifty way to put all of Mr.
Spurworthy’s work in a secret direc-

tory, introduce a few embarrassing typos into a few of his files,
and mail your boss mentioning that Spurworthy seems to be

Scripting can combine
all the programs you’d
use one at a time into
a single script that you

can use and reuse.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM16

Chapter 1—THE PENGUIN ON TOP 17

having a hard time lately, what with all his bad spelling. Script-
ing can combine all the programs you’d use one at a time into a
single script that you can use and reuse. Better yet, your scripts
can pipe data amongst each other if they’re properly written,
which means you can come up with chunks of commands that
do much, much more than a single program, in a dizzying num-
ber of combinations. This scriptability and combinability gives
life to another UNIX value: code reusability.

Using Text-Based Configuration Files
Another element of your typical UNIX is a reliance on text-based
configuration files. People roll their eyes and think of the earlier
days of Windows when everything was configured in multitudes
of INI files. Unroll them, and think about the hell you go through
with a single, gigantic registry file.

Thanks to your tiny filtering, inter-operating, scriptable tools,
configuring UNIX and all its applications becomes a pretty simple
proposition. You can pipe your configuration files through a se-
ries of commands that make the changes you need. It may seem
trivial for changing only one setting, but if you’re a network
administrator who suddenly finds that a computer further up
the line has changed its name or address and that many of your
programs count on knowing where that computer is, the beauty
of all those text files and all those little programs is evident.

IS THAT A COMPLETELY FREE RE-IMPLEMENTATION OF

UNIX IN YOUR POCKET?

So UNIX was everywhere and people loved it. It was the de facto
computing standard for many universities, and many a nerd felt
the earth move courtesy of pipes, filters, and scripts. In fact, one
man’s love for UNIX, combined with his hatred of being kept

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM17

18 THE JOY OF LINUX

from modifying computer software when it didn’t work as he
required, led to a rare thing indeed: a social movement driven by
“computer people” that spawned a new way of thinking about
licensing software. This new way of thinking seemingly subverted
peoples’ conceptions of intellectual property as a vehicle for re-
striction. Along the way, he also built a foundation for Linux to
which it may owe everything.

There’s certainly no arguing that without his work, Linux
would have had a different complexion.

Richard M. Stallman, more commonly referred to as “RMS”,
was a member of MIT’s Artificial Intelligence Lab. Among hack-
ers, the lab is legendary for the role it played in the formative
years of computing, and RMS is part of that lab’s history.

THE REST OF THE STORY…

To painfully understate the next 20 years of computing history,

UNIX went on to become the workhorse of the Internet and a

mainstay in corporations and universities. UNIX was the glue that

held the Internet together in many ways. Businesses relied on UNIX;

it was the operating system of choice for many.

Unfortunately, because of its popularity and the number of ways it

was re-created by many different companies, UNIX became a vic-

tim of its own success. It’s a story for another day, really, but UNIX

underwent a period of fragmentation. Because of conflicting at-

tempts to establish standards, leveraging one of its traditional ben-

efits, portability, became so difficult that the UNIX market fell into

chaos. In many ways, this gave Microsoft an opening into the server

market to which it continues to cling to this day.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM18

Chapter 1—THE PENGUIN ON TOP 19

Now is as good a time as any to delve into the whole “hacker”
issue, briefly, since so many Linux enthusiasts describe them-
selves as hackers and so many people without cathode ray tans
know (as all good law abiding citizens do) that a hacker is noth-
ing more than a computer vandal, which makes the “real hack-
ers” angry.

The classical definition of “hacker” varies depending on the
source. The safest bet, though, seems to read something like this:

Hackers are people posessed of
a love for things that aren’t known.
They’re curious, and interested in the
way things work, and often disinter-
ested in formalism when it comes to
figuring things out. Hackers are not
tied to computers. Hackers aren’t
universally disinterested in rules and
order. On the other hand, their curi-
osity is a driving value, and it takes
high priority.

There are, of course, a lot of self-
styled hackers wandering around
these days, thanks in part to the popularity of Linux and its roots
among software hackers. We once had the distinct pleasure of
reading a message by somebody who had claimed to “hack” a
word processor to display page previews correctly by setting the
“zoom” level to 10%. What it lacked in ingenuity, one could
argue it made up for in elegance…two mouse clicks et voilá! In
fact, it’s fashionable to be a hacker and there’s woefully little in
the way of peer review or certification to keep people from claim-
ing the title. But the main thing to keep in mind is that “hacker”
doesn’t necessarily mean “vandal,” and people claiming the title
are frequently law abiding enough folk, and certainly not out to
get your credit cards.

Among hackers,
the lab is legendary
for the role it played
in the formative years

of computing, and
RMS is part of that

lab’s history.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM19

20 THE JOY OF LINUX

MIT’s AI Lab was a gathering place for computer hackers of
the benign sort and RMS was one of them. The culture of the Lab,

by all popular accounts, was one of
extreme openness for many years.
Sharing one’s software was the norm
among the members of the Lab, as they
helped each other solve problems or
simply make their computers do, well,
cool stuff. RMS relates his own sense
of that community in an essay entitled
“The GNU Project”:

“We did not call our software ‘free software,’

because that term did not yet exist; but that is

what it was. Whenever people from another uni-

versity or a company wanted to port and use a

program, we gladly let them. If you saw some-

one using an unfamiliar and interesting program,

you could always ask to see the source code, so

that you could read it, change it, or cannibalize

parts of it to make a new program.”

Over the years, though, the AI Lab’s open spirit began to de-
cline, RMS himself attributing this to a number of things, including
the departure of many of its members to private interests. In addi-
tion, the ever-growing computer industry was seeing to it that soft-
ware stayed a proprietary, closed body of work. To a hacker, curi-
ous about the workings of things, this is a burden. To someone who
believed that there was a moral imperative to share information for
mutual betterment as RMS did (and does), it was intolerable.

So RMS found himself without the community of hackers
he’d thrived in, and faced with a larger industry that had identi-
fied proprietary secrets as a key ingredient to ongoing growth. It
wasn’t the world he wanted, and he realized that:

Hackers are people
posessed of a love

for things that
aren’t known.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM20

Chapter 1—THE PENGUIN ON TOP 21

“So I looked for a way that a programmer could

do something for the good. I asked myself, was

there a program or programs that I could write,

so as to make a community possible once again?

The answer was clear: what was needed first was

an operating system. That is the crucial software

for starting to use a computer. With an operating

system, you can do many things; without one,

you cannot run the computer at all. With a free

operating system, we could again have a com-

munity of cooperating hackers—and invite any-

one to join. And anyone would be able to use a

computer without starting out by conspiring to

deprive his or her friends.

As an operating system developer, I had the right

skills for this job. So even though I could not take

success for granted, I realized that I was elected to

do the job. I chose to make the system compatible

with UNIX so that it would be portable, and so

that UNIX users could easily switch to it. The name

GNU was chosen following a hacker tradition, as

a recursive acronym for ‘GNU’s Not Unix.’

An operating system does not mean just a kernel,

barely enough to run other programs. In the

1970s, every operating system worthy of the name

included command processors, assemblers, com-

pilers, interpreters, debuggers, text editors, mail-

ers, and much more. ITS had them, Multics had

them, VMS had them, and UNIX had them. The

GNU operating system would include them too.”

So RMS had his mission: the creation of a free UNIX-like
operating system with which he could rally the previously unnamed

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM21

22 THE JOY OF LINUX

“free software” community once again, and restore the openness
he’d enjoyed in his time at the AI Lab. He named his project
“GNU,” a recursive acronym that stands for ‘GNU’s Not Unix,’”
which is not only in keeping with the fondness many hackers have
for things like recursive acronyms, but the litigious nature of the
computing industry of the time, which would have compelled
AT&T to land on the nascent project like a ton of bricks.

IS THAT A RADICAL INVERSION OF OUR UNDERSTANDING

OF COPYRIGHT LAW IN YOUR POCKET?

RMS’ formula for “free software” is easy enough to follow:
• You have the freedom to run the program, for any purpose.
• You have the freedom to modify the program to suit your

needs. (To make this freedom effective in practice, you
must have access to the source code, since making changes
in a program without having the source code is exceed-
ingly difficult.)

• You have the freedom to redistribute copies, either gratis
or for a fee.

• You have the freedom to distribute modified versions of
the program, so that the community can benefit from
your improvements.

These principles are elaborated on
in the GNU General Public License
(known widely as “the GPL”). The
GPL is designed to guarantee that
once software is made “free” under
the above definition, it stays that way.
There are lengthy and bloody brawls
over licensing esoterica in the comput-
ing community, but the gist of the GPL
is simple enough to express here, un-
til you can get to the Appendix:

Don’t ever try to keep
other people from

getting at your
improvements to the

source code.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM22

Chapter 1—THE PENGUIN ON TOP 23

Here’s the software. Here’s the source code. Do what you
want with it. If you improve it, make sure you include all the
source code to your improvements and pass it along. Don’t ever
try to keep other people from getting at your improvements to
the source code. We can tell you to do this, because we wrote
this software and these are the terms under which we’re willing
to let you have it.

That’s a longish way of getting around to the intent of the
whole exercise, which might read, in a less litigious society, more
like: “Be excellent to each other.”

RUNNING WITH THE DEVIL: A BRIEF DETOUR TO THE

OTHER FREE RE-IMPLEMENTATION OF UNIX

RMS wasn’t the only person with a thing for UNIX.
During the ’70s, the University of California at Berkeley

was developing their own variant, based on source code licensed
from AT&T known as “BSD.” Their own version was very
popular...to the point that lawsuits ensued and they embarked
on creating a version of UNIX that was “unencumbered” by
AT&T’s source code.

As one might imagine, the process of stripping all the propri-
etary source out of an entire operating system is a difficult un-
dertaking, but by the time the legal dust settled and the job was
done, Berkeley had given 4.4BSD-Lite to the world. From that
code we have a collection of free Unixes in common use today:
FreeBSD, OpenBSD, and NetBSD.

When Linux and BSD fans come around each other, there
are several key differences that pop to the top once they decide
to quit mincing words and pull out the brass knuckles.

Where GNU, the eventual underpinning of Linux as we’ll see
shortly, was built around the premise of freeing software and re-
storing the hacker culture to its former heights of openness, BSD
was built on the notion of building a better UNIX than UNIX.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM23

24 THE JOY OF LINUX

Where GNU software requires sharing of source code and redis-
tribution of improvements, the BSD license simply says “take
this and do what you like with it, just make sure we’re given
prominent credit. No need to give back the source.”

A lot of snarling goes on over these distinctions, not to men-
tion the occasional flare-up when someone releases a new set of
test results showing that some version of BSD is much faster
than Linux. The UNIX “purists” in the BSD camp also like to
point out that their variant is descended from the mother source
itself and that Linux is a mere “imitation.”

These are fine points to make, and true for what they’re worth.
The vitriol you detect between the camps sometimes comes from
the fact that despite their “purity,” occasional technical superior-
ity, and easier-going licenses, the BSD’s haven’t caught on with the
same ferocity and hype that Linux has. BSD machines are out on
the Internet doing the good work, but they aren’t as well known.
Some people attribute that to the legal issues that kept BSD-Lite
from being released earlier, giving Linux a crucial lead. Others say
that the nature of the communities surrounding each is radically

different, with BSD’s being more closed
to newbies and outsiders.

In the end, it’s irrelevant. For
people who love the essentials of
UNIX, both provide a good option at
no cost. The differences that make
choosing one or the other are hard to
pin down, since both the BSDs and
Linux are close to ubiquitous across
hardware platforms and have differ-
ent strengths depending on the needs
of the user.

If there’s a lesson to be taken from
this and earlier parts of our narrative,

When Linux and BSD
fans come around each
other, there are several

key differences that pop
to the top once they

decide to quit mincing
words and pull out the

brass knuckles.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM24

Chapter 1—THE PENGUIN ON TOP 25

it’s simply that UNIX, for a variety of
reasons, has enjoyed an unprec-
edented following. Even when oper-
ating systems were at their most closed
and inaccessible, people have been
working on ways to preserve key
pieces of the UNIX experience. It says
quite a bit about how important the
UNIX legacy is to quite a few people
that we felt a little guilty only covering four UNIX variants, know-
ing full well that there are many, many more.

THE BIRTH OF LINUX

So in 1991, whether anyone realized it or not, the computing
world was primed for an operating system that would bring the
power and flexibility of UNIX to the desktop PC’s that were
becoming more and more common and inexpensive. Then Linus
Torvalds posted a message…

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>

Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be

big and professional like gnu) for 386(486) AT clones. This

has been brewing; since april, and is starting to get

ready. I’d like any feedback on things people like/dislike

BSD machines are
out on the Internet

doing the good work,
but they aren’t as

well known.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM25

26 THE JOY OF LINUX

in minix, as my OS resembles it somewhat (same physical

layout of the file-system (due to practical reasons) among

other things). I’ve currently ported bash(1.08) and

gcc(1.40),and things seem to work.This implies that I’ll

get something practical within a few months, andI’d like to

know what features most people would want. Any suggestions

are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it’s free of any minix code, and it has a multi-

threaded fs. It is NOT protable (uses 386 task switching

etc), and it probably never will support anything other

than AT-harddisks, as that’s all I have :-(.

The “Minix” he was referring to is a variant on UNIX (still
in use today), written by Andy Tannenbaum, a professor of com-
puter science and author of some well-regarded books on the

subject. Minix provided something
that acted a lot like UNIX on the more
and more popular Intel-based com-
puters, but it had limitations.

Linus, reacting to those limitations,
took a small bit of working code he
had and used Minix as a guideline and
supporting infrastructure in the earli-
est stages of his project. As his mail
mentioned, he’d already begun the
work of porting some of the tools Ri-
chard Stallman’s GNU project had pro-

vided (Bash is the shell in most common use on Linux systems and
gcc is a program for compiling programs from source code.) For
the most part, though, what he had wasn’t so much an operating
sytem as it was a simple kernel: the part of an operating system

By virtue of licensing
and some of the

earliest tools ported to
the fledgling operating

system, Linux and
GNU were closely tied.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM26

Chapter 1—THE PENGUIN ON TOP 27

that controls the most basic functions of a computer and provides
a way for programs to interact with the hardware (in the form of
input, output, networking, or other functions) and each other.

Initially, Linus had also intended to release his kernel under
a non-commercial license, allowing any and all use by all takers
except for businesses who’d use it for profit. He changed his
mind eventually, and released it under the GPL originated by
RMS and the Free Software Foundation. By virtue of licensing
and some of the earliest tools ported to the fledgling operating
system, Linux and GNU were closely tied.

With a second message, Linus announced that he was releas-
ing Linux to the world:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: Free minix-like kernel sources for 386-AT

Message-ID: <1991Oct5.054106.4647@klaava.Helsinki.FI>

Date: 5 Oct 91 05:41:06 GMT

Organization: University of Helsinki

Do you pine for the nice days of minix-1.1, when men were

men and wrote their own device drivers? Are you without a

nice project and just dying to cut your teeth on a OS you

can try to modify for your; needs? Are you finding it

frustrating when everything works on minix? No more all-

nighters to get a nifty program working? Then this post

might be just for you :-)

As I mentioned a month(?) ago, I’m working on a free ver-

sion of a minix-lookalike for AT-386 computers. It has

finally reached the stage where it’s even usable (though

may not be depending on what you want), and I am willing to

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM27

28 THE JOY OF LINUX

put out the sources for wider distribution. It is just

version 0.02 (+1 (very small) patch already), but I’ve

successfully run bash/gcc/gnu-make/gnu-sed/compress etc

under it.

Sources for this pet project of mine can be found at

nic.funet.fi (128.214.6.100) in the directory /pub/OS/

Linux. The directory also contains some README-file and a

couple of binaries to work under linux (bash, update and

gcc, what more can you ask for :-). Full kernel source is

provided, as no minix code has been used. Library sources

are only partially free, so that cannot be distributed

currently. The system is able to compile “as-is” and has

been known to work. Heh. Sources to the binaries (bash and

gcc) can be found at the same place in /pub/gnu.

So, with a very basic operating system built from Linus’ ker-
nel and a handful of GNU tools, Linux was born. It would be
appropriately dramatic and narration-minded to leave it at that,
but it’s important to note one element of the union of Linux (the

kernel) with GNU (the attempt to
build a Free Software implementation
of UNIX) that continues to stir up
some conflict from time to time, de-
pending on whether it’s a slow news
day or not.

It had always been Richard
Stallman’s intent to build a complete
operating system, which involves not
only software tools, but a kernel. The

GNU project’s attempts to build that kernel were moving fairly
slowly (they continue to this day with the ambitious “HURD”
project), and with the arrival of Linus’ kernel there was no longer

So, with a very basic
operating system built
from Linus’ kernel and

a handful of GNU
tools, Linux was born.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM28

Chapter 1—THE PENGUIN ON TOP 29

a need to wait: GNU tools could be mated to the Linux kernel,
and an operating system was ready to go.

RMS and many others have long argued that since the oper-
ating system most people simply call Linux was largely depen-
dent on GNU tools (and since it continues to depend on GNU
tools for much of its basic functionality), it’s most appropriate
to call it “GNU/Linux.” RMS says it’s giving credit where it’s
due, others say it’s trying to take too much credit when there are
plenty of other elements that make up Linux (the operating sys-
tem) that have nothing to do with GNU at all.

There are a couple of elements at
work that have given this debate more
life than you might think it would
enjoy otherwise:

For one, RMS knows in his heart
of hearts that he is right on this issue.
People who set out to rewrite an en-
tire operating system because it’s the
moral thing to do aren’t given to backing down on any point, no
matter how trivial a point of nomenclature it is to a less involved
populace. He’s widely respected (as he should be) and a large
number of people think his argument resonates.

For two, an equal number of people think he’s wrong on this
issue, and argue that even if GNU tools are important, they aren’t
indispensable.

For three, an even larger number than the other two groups
combined have no opinion and really don’t want to use the phrase
“GNU/Linux” where “Linux” will suffice to convey what you’re
talking about when it comes to “that operating system that Linus
Torvalds is associated with.”

We’ve copped out to common usage in this book, but both
authors are certain Linux needed GNU tools in its early days to

RMS knows in his
heart of hearts that he
is right on this issue.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM29

30 THE JOY OF LINUX

get where it is today. There are some people who have other
issues with Richard Stallman and the Free Software movement
in general who will disagree: We think they’re wrong and believe
it serves little to downplay the importance of GNU to the Linux
operating system because of issues outside simple history.

LINUX ON THE RISE

There have been a lot of attempts to explain why Linux grew in
popularity as rapidly as it did. Only ten years after those first
messages announcing it, plenty of people have tried to sum the
phenomenon up while it’s still underway, and there’s no doubt
that in twenty years people who write about operating systems
will see the whole thing differently. But it’s pretty clear that there
are a few things that contributed.

First, Linux provided exactly what its creator wanted: a
UNIX-like operating system that ran on the Intel-based PC hard-
ware that was growing in popularlity during the early ’90s. UNIX
was very popular at universities, and the alternative on the most
common PC’s of the time was Microsoft’s MS-DOS, which,
though largely derivative of “serious” operating systems in some
of its elements, was never built with hackers in mind. Students
and computer scientists were picking up PC’s for their homes
more and more during this period as it became a less than $1000
proposition to own fairly powerful hardware, and they wanted
a bit of UNIX on those machines: not something designed for
consumers with all the inherent design compromises.

Second, Linux was not only UNIX-like, it was hackable.
People could get into the workings of the operating system and
make it better if they so chose, or at least have access to the
people writing the software to ask for improvements. Looking
back over the storied history of UNIX (20 years old at this
point), loss of the UNIX source code to litigation and corporate

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM30

Chapter 1—THE PENGUIN ON TOP 31

imperatives had been a real blow to many, who had cut their
teeth on poring over the very blueprints of an operating sys-
tem. Linux, though crude, restored some of what they’d lost,
and it held the promise of at least providing something they
could mold into something bigger and better. In the ensuing
years, another related element of Linux’s popularity was de-
rived from its ability to run on ubiquitous hardware, which is
that it runs very well on hardware others might be ready to
discard. Old 486’s make great Linux servers, handling mail and
file sharing with aplomb while many other commercial prod-
ucts have long since stopped trying to work on all but fairly
new equipment.

Third, the arrival of Linux was
closely matched to the spread of the
Internet. Though around for as long
as UNIX, the Net was becoming a
daily reality for more and more
people. It became easier and easier to
download software, communicate,
and collaborate over the Internet with each passing day. By the
early ’90s, Net connected terminals in student dorm rooms were
far from uncommon, and even a university employee could eas-
ily connect via a modem to their employer’s computers on cam-
pus. The development community that sprang up around Linux
was global, and the Net held it together.

After the initial flurry of interest in Linux, another interest-
ing facet of Linux culture developed: the distribution.

One of the true pains of getting a working Linux machine
going was downloading all the needed bits and compiling them,
or even just getting them onto a machine. People answered this
problem with distributions, which were simply all the pieces of a
Linux-based operating system copied onto floppies or CD-ROM’s
and, well, distributed. Because Linux and the bulk of the software

Second, Linux was
not only UNIX-like,

it was hackable.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM31

32 THE JOY OF LINUX

was available under the FSF’s GPL (which provided for free and
open redistribution of software provided its source code was made
available), anybody could download it, set it up in such a manner
that it worked out-of-the-box for most people, and redistribute it
as a “distribution.”

Initially, some of these were crude lash-ups, designed merely
to get Linux onto a machine. Others, though, became more and
more polished as Linux evangelists began to realize that the easier
it was for a second, less expert tier of computer enthusiasts to
get Linux up and running, the further it would spread.

Some companies formed around the business of selling Linux
distributions, offering incentives to pay for something that could
be had for free in the form of convenience and even support via
phone or e-mail if something went wrong. Of the current dis-

tributions, Slackware is perhaps the
one left today with the longest lin-
eage back to the early days of Linux,
but in terms of Linux’s time on the
Earth, Red Hat (the first widely-suc-
cessful commercial distribution) and
Debian (a distribution run entirely by
volunteers) are both looking “long
in the tooth.”

An early notion of some commer-
cial Linux distributors was that their
profit would come from support for
installation and administration of
Linux computers. In shorthand,

they’d make money selling shrink-wrapped, pre-packaged prod-
ucts that the general public would feel more secure with than a
simple download and no phone support. This notion survived
for quite a few years, relatively speaking. We’ll see shortly that it
probably won’t survive the end of 2001.

An early notion of
some commercial

Linux distributors was
that their profit would
come from support for

installation and
administration of
Linux computers.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM32

Chapter 1—THE PENGUIN ON TOP 33

The Open-Source Explosion

Linux was gaining mindshare at an incredible rate, thanks to
distributions, be they companies or not, it was becoming more
and more accessible. Their efforts certainly put Linux in easy
reach of any moderately motivated hobbiest who was willing to
read all the documentation and figure out how to boot his com-
puter from a floppy disk or CD-ROM.

At the same time, though, some in the Linux community were
beginning to identify what they considered a problem: The label
that RMS had applied to his attempt to reengineer the way we
all thought about software, “free software,” with all the ambi-
guity inherent in the English word “free.” Stallman never meant
that software was to “cost nothing,” but rather had coined the
phrase to represent the freedom of the source code itself to be
copied and redistributed. Among many computer enthusiasts,
though, “free software” often carried the connotation of being
something a developer wouldn’t be able to sell if she wanted to.
“Freeware” was typically viewed as low quality or incomplete,
something companies gave away to prove to you that you needed
to buy something better.

Further, despite the fact many had benefited from Stallman’s
GNU project, there was a growing sense that the implicit politics
of the Free Software Foundation would scare off corporate adop-
tion of Linux, thanks to its language, which less charitable people
would characterize as “communistic” in the very least charitable
sense of the word.

When you pause to consider how much UNIX hackers loath
rebuilding any wheel, what seemed like a constant reiteration of
the FSF definition of “free software” was becoming truly irritat-
ing to many Linux advocates, who believed Linux had a place as
a “serious” operating system if only it could shake off the notion
of the less informed that it was a cheap freebie of disposable value.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM33

34 THE JOY OF LINUX

One person key to the eventual movement to market this
notion out of existence was Eric S. Raymond, who, like RMS,
goes by his initials. ESR was known for several projects he main-
tained, including a piece of software for downloading mail (called
“fetchmail”), his dictionary of hackish language (called “The
New Hacker’s Dictionary” in its print form and “The Jargon
File” in its online version), and his contributions to a file that
helps UNIX machines understand how to talk to a number of
computer terminals from the days when “dumb terminals” were
the primary way to communicate with large, multi-user comput-
ers. ESR is also a self-styled anthropologist of the hacker com-
munity, and a “tribal historian” for the same.

According to Raymond, what was required was not a con-
tinual effort to rehabilitate the negative connotations of “free
software,” but to invent a new marketing approach. Further, his

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM34

Chapter 1—THE PENGUIN ON TOP 35

own politics were such that the language found throughout the
Free Software Foundation’s licensing and manifestos was dis-
agreeable; he sought to depoliticize free software.

Along with another prominent figure in the early Linux com-
munity, Bruce Perens (former project leader of the Debian distri-
bution), and a collection of others, ESR led a push to market the
name open-source software as a new way of thinking about the
sort of code sharing in which free-software advocates had been
engaging in up to that point. They presented the “Open-Source
Definition,” which created a set of criteria by which software
could be determined to be open-source, and monitored the many
licenses under which software could be released to determine
their compatibility with the Open-Source Definition.

Although the Open-Source Definition clearly paid due re-
spect to the FSF’s GPL, open-source supporters also placed a
heavy emphasis on the development methodology elements of
the Linux and open-source worlds.
They played down the political beliefs
of early free-software advocates in
favor of expressing the benefits of
open source as a set of design para-
digms that helped eliminate bugs and
provided more secure software
through the massive peer review of an
extended community of hackers.

The effects of this are still felt to-
day. Whereas many companies would
have been revolted at the thought of
“giving away their intellectual property,” they took to the idea
of letting many people work on a project in parallel. That way,
the collective creativity of those involved would expose bugs more
rapidly and provide solutions to problems more quickly.

ESR is also a
self-styled

anthropologist of the
hacker community, and
a “tribal historian” for

the same.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM35

36 THE JOY OF LINUX

Of late, this has led to several takes on open source. These
range from “companies giving away all their source code, allow-
ing the developer community to do what it will,” to “gated com-
munities,” wherein companies maintain tight control of their
software. These gated communities admit few, if any, outsiders

into their development process, while
trying to re-create the organizational
model that has served many free/open-
source software projects well.

In addition to promoting open-
source software, ESR went to work
on a series of papers that he hoped
would encapsulate the defining char-
acteristics of open-source software de-
velopment. The most famous was the
first, entitled “The Cathedral and the
Bazaar,” (often referred to as “CatB”),
after what Raymond identified as the
primary metaphors dominating soft-
ware development.

Briefly, software prepared by proprietary interests is typi-
cally handled in a “cathedral” fashion, with a single, small team
working in isolation to develop the project. The “bazaar” model,
on the other hand, involves a large collection of developers work-
ing on the parts of the project that most interest them. The ba-
zaar model is characterized by a “take all comers” spirit that
pays less attention to the arbitrary definitions of corporate affili-
ations or workplace product groups and more to the individual
merit of the developer approaching a project: If you can contrib-
ute meaningfully and gain the respect of those maintaining a
project, you can work on it.

CatB was a popular piece of work. It had the benefit of draw-
ing examples from an actual “bazaar style” project (fetchmail),

Briefly, software
prepared by

proprietary interests is
typically handled in a
“cathedral” fashion,
with a single, small

team working in
isolation to develop

the project.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM36

Chapter 1—THE PENGUIN ON TOP 37

and it summarized in very short form what all the fuss was about
with open source. It had an impact on executives at Netscape
that sealed its importance when they announced in 1998 that
they were releasing the source code to their browser software to
the world. Some pegged Netscape’s “gift” as more of an oppor-
tunistic attempt to exploit the buzz enjoyed by open-source soft-
ware, but the impact of the move was felt in terms of enhanced
prestige for open-source software. If a corporation as prominent
as Netscape was willing to try out this development model, maybe
there was something to it.

THE LINUX STOCK ORGY AND LINUX TODAY MANIA

In the wake of the notoriety Mozilla lent to open-source soft-
ware, the media began to pay attention to Linux in a way it
hadn’t before. People could under-
stand what Netscape was, and some
would stick around to listen to the
new development model it was using.
In turn, they were often directed to
Linux as “the most successful adher-
ent to open-source methodologies.”

Seemingly overnight, public
awareness of the operating system
exploded, and a few companies be-
gan to position themselves to go pub-
lic and make some money. Red Hat,
the distribution company, and VA
Linux, a hardware manufacturer, both had stellar initial public
offerings of stock (IPO’s) that turned some of their employees
and early investors into overnight paper millionaires. The riot-
ous atmosphere surrounding these two companies, fueled by
an ever-booming stock market and increasing buzz about Linux

People could
understand what

Netscape was, and
some would stick

around to listen to the
new development

model it was using.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM37

38 THE JOY OF LINUX

itself as it became better suited to more and more tasks, made
them seem like the surest bets going.

Other companies began to pile on. If they couldn’t offer stock,
they just took to announcing “Linux support” or “the open sourc-
ing” of key software. For half a year, Linux stocks rose and rose,
and then the bottom fell out. Companies eager to break into
public trading withdrew IPO’s as analysts began to ask hard

questions about how Linux compa-
nies would make money, and compa-
nies already on the market suffered
calamitous drops, going from highs
of over $200 a share to lows hover-
ing around $5 a share. A few smaller
companies nearly went under, and in
the case of Corel, a company that em-
braced Linux and created its own dis-
tribution to complement its
WordPerfect product, sold off big
parts of their Linux operations.

The hardest question people were asking was simply “If this
thing is free, and everybody’s learning how to use it, and it’s
getting easier and easier to install (one version allowed you to
play Tetris while waiting for Linux to finish installation) where’s
the revenue for installation support going to come from?” Oth-
ers wanted to know how long hardware companies specializing
in Linux would hold up once giants like Dell and Compaq began
to adopt it, as they were at ever-increasing levels.

In many ways, the answer has come from the companies
themselves in the form of realignments around new models
built to earn money from providing “services” instead of “sup-
port.” Where companies once proposed to make money with
phone support, they now offer remote network management

If they couldn’t offer
stock, they just took to

announcing “Linux
support” or “the open

sourcing” of key
software.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM38

Chapter 1—THE PENGUIN ON TOP 39

and security auditing. Where it was once fashionable to think
simply packaging a lot of extra software on a CD was enough,
companies are beginning to realize the real money lies in con-
tracts with giant corporations adopting Linux for use in their
day-to-day operations.

So we’re left with a wrap-up of our brief history of Linux,
back on the convention floor in New York.

The stock hysteria has died, Linux has gone from being a
hobbiest’s toy to a serious operating system companies are will-
ing to depend on for critical operations. It’s also turned up in
tiny, embedded devices that control industrial machines, and in
handheld computers. The same year
that some Linux companies went
from booming darlings of the tech
industry to near-bankrupt failures,
IBM has announced it wants to in-
vest $1 billion in Linux development,
and other companies are joining in.

In other words: Linux, born out-
side of commercial interest, may well
outlive many of the first generation
of companies that sought to make it
a commercial phenomenon. It’s a mis-
take to believe that its success is tied
into how well it does in the stock
market, or even how well companies
pushing it as a sure-fire way to make money fare.

As much, though, as Linux is becoming a corporate phenom-
enon, it’s also still a “people” phenomenon. It’s great for compa-
nies, sure, but it’s also wonderful for people. For every company
that stands up and proclaims that Linux is useful for something
after all, there are hundreds and thousands of people driving its

In other words: Linux,
born outside of

commercial interest,
may well outlive many
of the first generation

of companies that
sought to make it a

commercial
phenomenon.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM39

40 THE JOY OF LINUX

use on personal computers around the world. “The Linux com-
munity” might have once been a handful of far-flung program-
mers working toward the goal of having UNIX on their new 386’s.
Now it’s a far-flung collection of users and hackers of all sorts
who use Linux every day. This community is what makes it a joy.

Joy ch 01(E).PM6.5 3/29/01, 2:50 PM40

